Central limit theorems and inference for sources of productivity change measured by nonparametric Malmquist indices
Year of publication: |
2019
|
---|---|
Authors: | Simar, Léopold ; Wilson, Paul W. |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 277.2019, 2 (1.9.), p. 756-769
|
Subject: | Asymptotic | DEA | Hypothesis test | Inference | Malmquist index | Data-Envelopment-Analyse | Data envelopment analysis | Produktivität | Productivity | Produktivitätsentwicklung | Productivity change | Index | Index number | Induktive Statistik | Statistical inference | Technische Effizienz | Technical efficiency | Schätztheorie | Estimation theory | Nichtparametrisches Verfahren | Nonparametric statistics | Bootstrap-Verfahren | Bootstrap approach | Statistische Methodenlehre | Statistical theory |
-
Statistical inference for aggregation of Malmquist productivity indices
Pham, Manh, (2024)
-
Testing hypotheses in nonparametric models of production
Kneip, Alois, (2016)
-
Zelenyuk, Valentin, (2023)
- More ...
-
Asymptotics and Consistent Bootstraps for DEA Estimators in Non-parametric Frontier Models
Kneip, Alois, (2006)
-
Fast and efficient computation of directional distance estimators
Daraio, Cinzia, (2018)
-
Quality and its impact on efficiency
Daraio, Cinzia, (2019)
- More ...