Constructing spatiotemporal poverty indices from big data
Year of publication: |
January 2017
|
---|---|
Authors: | Njuguna, Christopher ; McSharry, Patrick E. |
Published in: |
Journal of business research : JBR. - New York, NY : Elsevier, ISSN 0148-2963, ZDB-ID 189773-1. - Vol. 70.2017, p. 318-327
|
Subject: | Call detail record (CDR) | Poverty index | Machine learning | Big data | Socioeconomic level | Rwanda | Künstliche Intelligenz | Artificial intelligence | Big Data | Armut | Poverty | Ruanda | Sozialer Indikator | Social indicator | Messung | Measurement | Index | Index number | Indexberechnung | Index construction |
-
Considering the extremely poor : multidimensional poverty measurement for Germany
Nowak, Daniel, (2014)
-
Non-monetary poverty in Togo : a multidimensional approach
Noglo, Yawo Agbényégan, (2017)
-
Are social exclusion and poverty measures interrelated? : a study with Spanish data
Sánchez, Cristina, (2012)
- More ...
-
Use of machine learning techniques to create a credit score model for airtime loans
Dushimimana, Bernard, (2020)
-
A comparison of univariate methods for forecasting electricity demand up to a day ahead
Taylor, James W., (2006)
-
Nkurunziza, Fabrice, (2023)
- More ...