Consumer credit risk analysis through artificial intelligence : a comparative study between the classical approach of logistic regression and advanced machine learning techniques
Year of publication: |
2024
|
---|---|
Authors: | El Khair Ghoujdam, Mousaab ; Chaâbita, Rachid ; Elkhalfi, Oussama ; Zehraoui, Kamal ; Elalaoui, Hicham ; Idamia, Salwa |
Published in: |
Cogent economics & finance. - Abingdon : Taylor & Francis, ISSN 2332-2039, ZDB-ID 2773198-4. - Vol. 12.2024, 1, Art.-No. 2414926, p. 1-14
|
Subject: | Artificial neural network | credit risk | logistic regression | machine learning | decision tree | Künstliche Intelligenz | Artificial intelligence | Kreditrisiko | Credit risk | Neuronale Netze | Neural networks | Regressionsanalyse | Regression analysis | Kreditwürdigkeit | Credit rating | Prognoseverfahren | Forecasting model | Verbraucherkredit | Consumer credit | Entscheidungsbaum | Decision tree | Theorie | Theory |
-
Is artificial intelligence really more accurate in predicting bankruptcy?
Letkovský, Stanislav, (2023)
-
EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks
Kristóf, Tamás, (2022)
-
Machine learning-based classifiers ensemble for credit risk assessment
Pandey, Trilok Nath, (2013)
- More ...
-
Public spending on human capital and economic growth in Morocco
Elkhalfi, Oussama, (2023)
-
The impact of external debt on economic growth : the case of emerging countries
Elkhalfi, Oussama, (2024)
-
Les effets des accords de libre-échange entre le Maroc et l'Union Européenne
Mourji, Fouzi, (1997)
- More ...