COVID-19 : prediction, prevalence, and the operations of vaccine allocation
Year of publication: |
2023
|
---|---|
Authors: | Bennouna, Amine ; Joseph, Joshua ; Nze-Ndong, David ; Perakis, Georgia ; Singhvi, Divya ; Lami, Omar Skali ; Spantidakis, Yannis ; Thayaparan, Leann ; Tsiourvas, Asterios |
Published in: |
Manufacturing & service operations management : M & SOM. - Linthicum, Md. : Informs, ISSN 1526-5498, ZDB-ID 2023273-1. - Vol. 25.2023, 3, p. 1013-1032
|
Subject: | COVID-19 | epidemiology | machine learning | prevalence | vaccine distribution | Coronavirus | Impfung | Vaccination | Künstliche Intelligenz | Artificial intelligence | Epidemie | Epidemic | Infektionsschutz | Infection control | Arzneimittel | Pharmaceuticals | Gesundheitspolitik | Health policy | Wirkungsanalyse | Impact assessment | Allokation | Allocation |
-
Data-driven COVID-19 vaccine development for Janssen
Bertsimas, Dimitris, (2023)
-
Mohammadi, Mehrdad, (2024)
-
Shamsi Gamchi, Nafiseh, (2023)
- More ...
-
COVID-19 : a multiwave SIR-based model for learning waves
Perakis, Georgia, (2023)
-
COVID-19 : A Multipeak SIR Based Model for Learning Waves and Optimizing Testing
Perakis, Georgia, (2021)
-
Borenstein, Alison, (2023)
- More ...