Deep learning for individual heterogeneity : an automatic inference framework
Year of publication: |
[2021]
|
---|---|
Authors: | Farrell, Max H. ; Liang, Tengyuan ; Misra, Sanjog |
Publisher: |
[London] : Cemmap, Centre for Microdata Methuods and Practice, The Institute for Fiscal Studies, Department of Economics, UCL |
Subject: | Deep Learning | Influence Functions | Neyman Orthogonality | Heterogeneity | Structural Modeling | Semiparametric Inference |
Extent: | 1 Online-Ressource (circa 65 Seiten) Illustrationen |
---|---|
Series: | CEMMAP working papers / Centre for Microdata Methods and Practice. - London : [Verlag nicht ermittelbar], ISSN 1753-9196, ZDB-ID 2106928-1. - Vol. CWP21, 29 |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Other identifiers: | 10.47004/wp.cem.2021.2921 [DOI] hdl:10419/246797 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Deep learning for individual heterogeneity: An automatic inference framework
Farrell, Max H., (2021)
-
The dynamic advertising effect of collegiate athletics
Chung, Doug J., (2013)
-
Crowdsourcing new product ideas under consumer learning
Huang, Yan, (2014)
- More ...
-
Deep learning for individual heterogeneity: An automatic inference framework
Farrell, Max H., (2021)
-
Statistical inference for the population landscape via momentâadjusted stochastic gradients
Liang, Tengyuan, (2019)
-
Cai, T. Tony, (2015)
- More ...