Deep learning volatility : a deep neural network perspective on pricing and calibration in (rough) volatility models
Year of publication: |
2021
|
---|---|
Authors: | Horvath, Blanka Nora ; Muguruza, Aitor ; Tomas, Mehdi |
Published in: |
Quantitative finance. - London : Taylor & Francis, ISSN 1469-7696, ZDB-ID 2027557-2. - Vol. 21.2021, 1, p. 11-27
|
Subject: | Accurate price approximation | Calibration | Machine learning | Model assessment | Monte Carlo | Rough volatility | Volatility modelling | Volterra process | Volatilität | Volatility | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Optionspreistheorie | Option pricing theory | Prognoseverfahren | Forecasting model | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation |
-
Bayer, Christian, (2020)
-
Solving economic models with neural networks without backpropagation
Pascal, Julien, (2025)
-
Artificial Neural Networks Performance in WIG20 Index Options Pricing
Wysockia, Maciej, (2020)
- More ...
-
Horvath, Blanka, (2019)
-
Functional Central Limit Theorems for Rough Volatility
Horvath, Blanka Nora, (2019)
-
Functional central limit theorems for rough volatility
Horvath, Blanka Nora, (2024)
- More ...