Deep Learning Volatility
Year of publication: |
2019
|
---|---|
Authors: | Horvath, Blanka |
Other Persons: | Muguruza, Aitor (contributor) ; Tomas, Mehdi (contributor) |
Publisher: |
[2019]: [S.l.] : SSRN |
Subject: | Lernprozess | Learning process | Volatilität | Volatility | Lernen | Learning | Künstliche Intelligenz | Artificial intelligence |
Extent: | 1 Online-Ressource (41 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 24, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.3322085 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Asset returns in deep learning methods : an empirical analysis on SSE 50 and CSI 300
Li, Weiping, (2020)
-
Deep learning, jumps, and volatility bursts
Bashchenko, Oksana, (2020)
-
Does inclusion of GARCH variance in deep learning models improve financial contagion prediction?
Rayadurgam, Vikram Chandramouli, (2023)
- More ...
-
Horvath, Blanka Nora, (2021)
-
Clustering Market Regimes Using the Wasserstein Distance
Horvath, Blanka, (2021)
-
Functional Central Limit Theorems for Rough Volatility
Horvath, Blanka Nora, (2019)
- More ...