Deriving topic-related and interaction features to predict top attractive reviews for a specific business entity
Year of publication: |
2020
|
---|---|
Authors: | Lee, Eunjung ; Huimin, Zhao |
Published in: |
Journal of business analytics. - London : Taylor & Francis Group, ISSN 2573-2358, ZDB-ID 2907637-7. - Vol. 3.2020, 1, p. 17-31
|
Subject: | latent topic model | machine learning | Online review helpfulness | predictive analytics | text mining | top attractive reviews | Künstliche Intelligenz | Artificial intelligence | Data Mining | Data mining | Prognoseverfahren | Forecasting model | Virales Marketing | Viral marketing | Online-Handel | Online retailing | Social Web | Social web |
-
Büttner, Ricardo, (2017)
-
Poushneh, Atieh, (2022)
-
Sentiment analysis in electronic negotiations
Körner, Michael, (2019)
- More ...
-
Predicting company bankruptcy using machine learning techniques : a step-by-step guide
Lee, Eunjung, (2023)
-
Instance weighting versus threshold adjusting for cost-sensitive classification
Huimin, Zhao, (2008)
-
Wang, Gang, (2021)
- More ...