Diffusion equations : convergence of the functional scheme derived from the binomial tree with local volatility for non smooth payoff functions
Year of publication: |
2018
|
---|---|
Authors: | Baptiste, Julien ; Lépinette, Emmanuel |
Published in: |
Applied mathematical finance. - Abingdon : Routledge, Taylor & Francis Group, ISSN 1350-486X, ZDB-ID 1282409-4. - Vol. 25.2018, 5/6, p. 511-532
|
Subject: | And phrases: binomial tree model | diffusion partial differential equations | European option pricing | finite difference scheme | finite element scheme | Optionspreistheorie | Option pricing theory | Volatilität | Volatility | Black-Scholes-Modell | Black-Scholes model | Stochastischer Prozess | Stochastic process | Analysis | Mathematical analysis | Derivat | Derivative |
-
Benk, Janos, (2017)
-
Krasin, Vladislav Y., (2018)
-
Guo, Changhong, (2023)
- More ...
-
Pricing Without Martingale Measure
Baptiste, Julien, (2018)
-
Approximation of non-Lipschitz SDEs by Picard iterations
Baptiste, Julien, (2018)
-
Approximation of Non-Lipschitz SDEs by Picard Iterations
Baptiste, Julien, (2018)
- More ...