Discovering new plausibility checks for supervisory data: A machine learning approach
Year of publication: |
2021
|
---|---|
Authors: | Romano, Stefania ; Martinez-Heras, Jose ; Natalini Raponi, Francesco ; Guidi, Gregorio ; Gottron, Thomas |
Publisher: |
Frankfurt a. M. : European Central Bank (ECB) |
Subject: | machine learning | quality assurance | validation rules | plausibility checks | supervisory data |
Series: | ECB Statistics Paper ; 41 |
---|---|
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Working Paper |
Language: | English |
ISBN: | 978-92-899-4700-8 |
Other identifiers: | 10.2866/19338 [DOI] 1774658208 [GVK] hdl:10419/274089 [Handle] Repec:ecb:ecbsps:202141 [RePEc] |
Classification: | c18 ; C63 - Computational Techniques ; C81 - Methodology for Collecting, Estimating, and Organizing Microeconomic Data ; E58 - Central Banks and Their Policies ; G28 - Government Policy and Regulation |
Source: |
-
Discovering new plausibility checks for supervisory data : a machine learning approach
Romano, Stefania, (2021)
-
Finding needles in haystacks: Multiple-imputation record linkage using machine learning
Abowd, John M., (2022)
-
Mapa dos homicĂdios ocultos no Brasil entre 1996 e 2021
Cerqueira, Daniel, (2024)
- More ...
-
Discovering new plausibility checks for supervisory data : a machine learning approach
Romano, Stefania, (2021)
-
Labour income inequality and in-work poverty : a comparison between euro area countries
Bovini, Giulia, (2023)
-
Inside the labyrinth of Basel risk-weighted assets: how not to get lost
cannata, Francesco, (2012)
- More ...