Efficient estimation of conditionally linear and Gaussian state space models
Year of publication: |
2014
|
---|---|
Authors: | Moura, Guilherme Valle ; Turatti, Douglas Eduardo |
Published in: |
Economics letters. - Amsterdam [u.a.] : Elsevier, ISSN 0165-1765, ZDB-ID 717210-2. - Vol. 124.2014, 3, p. 494-499
|
Subject: | Nonlinear state-space models | Efficient importance sampling | Rao-Blackwellization | Inflation forecasting | Zustandsraummodell | State space model | Schätzung | Estimation | Prognoseverfahren | Forecasting model | Inflation | Stichprobenerhebung | Sampling | Schätztheorie | Estimation theory | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Nichtlineare Regression | Nonlinear regression | Stochastischer Prozess | Stochastic process |
-
Numerically accelerated importance sampling for nonlinear non-Gaussian state-space models
Koopman, Siem Jan, (2015)
-
Chan, Joshua, (2017)
-
ML-estimation of sampled stochastic differential equations
Singer, Hermann, (2009)
- More ...
-
Efficient estimation of conditionally linear and Gaussian state space models
Moura, Guilherme V., (2014)
-
Monte Carlo analysis of time-varying parameter models with stochastic volatility
Turatti, Douglas Eduardo, (2018)
-
Testing for mean reversion in Bitcoin returns with Gibbs-sampling-augmented randomization
Turatti, Douglas Eduardo, (2020)
- More ...