Efficient Learning of Nested Deep Hedging using Multiple Options
Year of publication: |
[2023]
|
---|---|
Authors: | HIRANO, Masanori ; Imajo, Kentaro ; Minami, Kentaro ; SHIMADA, Takuya |
Publisher: |
[S.l.] : SSRN |
Subject: | Hedging | Theorie | Theory | Lernprozess | Learning process | Optionsgeschäft | Option trading | Lernen | Learning | Effizienzmarkthypothese | Efficient market hypothesis |
Extent: | 1 Online-Ressource (8 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments May 20, 2023 erstellt |
Other identifiers: | 10.2139/ssrn.4454377 [DOI] |
Classification: | G1 - General Financial Markets |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Deep Learning in Characteristics-Sorted Factor Models
Feng, Guanhao, (2020)
-
Quote Inefficiency in Options Markets
Rodríguez Longarela, Iñaki, (2015)
-
Asset Pricing in Production Economies with Learning About Rare Disasters
Niu, Yingjie, (2020)
- More ...
-
Adversarial Deep Hedging : Learning to Hedge without Price Process Modeling
HIRANO, Masanori, (2023)
-
No-transaction band network : a neural network architecture for efficient deep hedging
Imaki, Shota, (2023)
-
Impact analysis of financial regulation on multi-asset markets using artificial market simulations
Hirano, Masanori, (2020)
- More ...