Forecasting Korean stock returns with machine learning
Year of publication: |
2023
|
---|---|
Authors: | Noh, Hohsuk ; Jang, Hyuna ; Yang, Cheol-Won |
Published in: |
Asia-Pacific journal of financial studies. - Hoboken, NJ [u.a.] : Wiley-Blackwell, ISSN 2041-6156, ZDB-ID 2548470-9. - Vol. 52.2023, 2, p. 193-241
|
Subject: | Gradient boosting machine | Machine learning | Neural network | Random forest | Stock returns | Variable importance | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Kapitaleinkommen | Capital income | Südkorea | South Korea |
-
A cross-sectional machine learning approach for hedge fund return prediction and selection
Wu, Wenbo, (2021)
-
Forecasting relative returns for S&P 500 stocks using machine learning
Htet Htet Htun, (2024)
-
Machine learning and the cross-section of emerging market stock returns
Hanauer, Matthias Xaver, (2023)
- More ...
-
Vine copula Granger causality in mean
Jang, Hyuna, (2022)
-
Vine copula Granger causality in quantiles
Jang, Hyuna, (2024)
-
Model Selection via Bayesian Information Criterion for Quantile Regression Models
Lee, Eun Ryung, (2014)
- More ...