Forecasting Long-Term Electricity Demand Time Series Using Artificial Neural Networks
Year of publication: |
2020
|
---|---|
Authors: | Behm, Christian ; Nolting, Lars ; Praktiknjo, Aaron |
Publisher: |
[S.l.] : SSRN |
Subject: | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Energieprognose | Energy forecast | Energiekonsum | Energy consumption | Elektrizität | Electricity | Nachfrage | Demand |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Series: | USAEE Working Paper ; No. 20-432 |
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 23, 2020 erstellt |
Other identifiers: | 10.2139/ssrn.3524137 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Electricity consumption prediction using artificial intelligence
Čegovnik, Tomaž, (2023)
-
Aghaeifar, Roya, (2013)
-
Exponential smoothing with covariates applied to electricity demand forecast
Bermúdez, José D., (2013)
- More ...
-
Kockel, Christina, (2020)
-
Kockel, Christina, (2020)
-
Artificial intelligence and design of experiments for resource adequacy assessment in power systems
Priesmann, J., (2024)
- More ...