Forecasting S&P 500 spikes : an SVM approach
Year of publication: |
2020
|
---|---|
Authors: | Papadimitriou, Theophilos ; Gkonkas, Periklēs ; Athanasiou, Athanasios-Fotios |
Published in: |
Digital finance : smart data analytics, investment innovation, and financial technology. - [Cham] : Springer Nature Switzerland AG, ISSN 2524-6186, ZDB-ID 2947479-6. - Vol. 2.2020, 3/4, p. 241-258
|
Subject: | Forecast | Machine learning | Support vector machines | Spikes | S&P 500 | GARCH | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Mustererkennung | Pattern recognition | ARCH-Modell | ARCH model | Prognose | Neuronale Netze | Neural networks |
-
An application of support vector machines to sales forecasting under promotions
Di Pillo, Gianni, (2016)
-
Forecasting sovereign risk in the euro area via machine learning
Belly, Guillaume, (2023)
-
Chhajer, Parshv, (2022)
- More ...
-
Forecasting unemployment in the euro area with machine learning
Gkonkas, Periklēs, (2021)
-
The resilience of the U.S. banking system
Papadimitriou, Theophilos, (2022)
-
Testing purchasing power parity in a DFA rolling Hurst framework : the case of 23 OECD countries
Gkonkas, Periklēs, (2013)
- More ...