Forecasting stock market dynamics using bidirectional long short-term memory
| Year of publication: |
2021
|
|---|---|
| Authors: | Park, Daehyeon ; Ryu, Doojin |
| Published in: |
Romanian journal of economic forecasting. - Bucharest : Inst., ISSN 2537-6071, ZDB-ID 2428295-9. - Vol. 24.2021, 2, p. 22-34
|
| Subject: | Bidirectional long short-term memory | Forecasting | Machine learning | Implied volatility | Stock return | Volatilität | Volatility | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Künstliche Intelligenz | Artificial intelligence | Aktienmarkt | Stock market | Börsenkurs | Share price | Theorie | Theory | Kapitaleinkommen | Capital income | Prognose | Forecast |
-
Feature selection with annealing for forecasting financial time series
Pabuccu, Hakan, (2024)
-
Irrational fads, short-term memory emulation, and asset predictability
Bekiros, Stelios D., (2013)
-
Nõu, Anders, (2023)
- More ...
-
Capital markets for small- and medium-sized enterprises and startups in Korea
Binh, Ki Beom, (2020)
-
Supply Chain Ethics and Transparency : An agent-based model approach with Q-learning agents
Park, Daehyeon, (2022)
-
Supply chain ethics and transparency : an agent-based model approach with Q-learning agents
Park, Daehyeon, (2022)
- More ...