Forecasting the insolvency of US banks using Support Vector Machines (SVMs) based on local learning feature selection
| Year of publication: |
2013
|
|---|---|
| Authors: | Papadimitriou, Theophilos ; Gkonkas, Periklēs ; Plakandaras, Vasilios ; Mourmouris, John C. |
| Published in: |
International journal of computational economics and econometrics. - Genève [u.a.] : Inderscience Enterprises, ISSN 1757-1170, ZDB-ID 2550146-X. - Vol. 3.2013, 1/2, p. 83-90
|
| Subject: | bank insolvency | SVM | support vector machine | local learning | feature selection | Mustererkennung | Pattern recognition | Bankinsolvenz | Bank failure | Insolvenz | Insolvency | Lernprozess | Learning process | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Kreditwürdigkeit | Credit rating | Prognoseverfahren | Forecasting model |
-
Predicting bank insolvencies using machine learning techniques
Petropoulos, Anastasios, (2020)
-
Shrivastava, Santosh Kumar, (2020)
-
Le, Hong Hanh, (2018)
- More ...
-
A Re-Evaluation of the Feldstein-Horioka Puzzle in the Eurozone
Plakandaras, Vasilios, (2018)
-
A Re-Evaluation of the Term Spread as a Leading Indicator
Plakandaras, Vasilios, (2019)
-
Macroeconomic Uncertainty, Growth and Inflation in the Eurozone : A Causal Approach
Plakandaras, Vasilios, (2017)
- More ...