Forecasting with trees
| Year of publication: |
2022
|
|---|---|
| Authors: | Januschowski, Tim ; Wang, Yuyang ; Torkkola, Kari ; Erkkilä, Timo ; Hasson, Hilaf ; Gasthaus, Jan |
| Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 38.2022, 4, p. 1473-1481
|
| Subject: | Deep Learning | Global forecasting models | Gradient Boosted Trees | Probabilistic forecasting | Random forests | Prognoseverfahren | Forecasting model | Forstwirtschaft | Forestry | Prognose | Forecast | Theorie | Theory | Wirtschaftsprognose | Economic forecast |
-
Parameter-efficient deep probabilistic forecasting
Sprangers, Olivier, (2023)
-
Solving the forecast combination puzzle
Frazier, David T., (2023)
-
Uncertainty measures from partially rounded probabilistic forecast surveys
Glas, Alexander, (2020)
- More ...
-
Criteria for classifying forecasting methods
Januschowski, Tim, (2020)
-
DeepAR : probabilistic forecasting with autoregressive recurrent networks
Salinas, David, (2020)
-
System value assessment of rooftop solar-plus-storage considering regional heterogeneity
Zhang, Yihan, (2025)
- More ...