DeepAR : probabilistic forecasting with autoregressive recurrent networks
Year of publication: |
2020
|
---|---|
Authors: | Salinas, David ; Flunkert, Valentin ; Gasthaus, Jan ; Januschowski, Tim |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 36.2020, 3, p. 1181-1191
|
Subject: | Probabilistic forecasting | Neural networks | Deep learning | Big data | Demand forecasting | Neuronale Netze | Prognoseverfahren | Forecasting model | Theorie | Theory | Big Data | Nachfrage | Demand | Wahrscheinlichkeitsrechnung | Probability theory | Prognose | Forecast |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Notes: | Erratum enthalten in: Volume 37, issue 3 (July/September 2021), Seite 1302-1303 |
Other identifiers: | 10.1016/j.ijforecast.2019.07.001 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Machine learning methods for GEFCom2017 probabilistic load forecasting
Smyl, Slawek, (2019)
-
Cui, Yingji, (2021)
-
A hybrid machine learning model for forecasting a billing period’s peak electric load days
Saxena, Harshit, (2019)
- More ...
-
Criteria for classifying forecasting methods
Januschowski, Tim, (2020)
-
Januschowski, Tim, (2022)
-
Forecasting with In-Memory Technology
Januschowski, Tim, (2013)
- More ...