Fundamental ratios as predictors of ESG scores : a machine learning approach
| Year of publication: |
2021
|
|---|---|
| Authors: | D'Amato, Valeria ; D'Ecclesia, Rita Laura ; Levantesi, Susanna |
| Published in: |
Decisions in economics and finance : a journal of applied mathematics. - Milano : Springer Italia, ISSN 1129-6569, ZDB-ID 2023516-1. - Vol. 44.2021, 2, p. 1087-1110
|
| Subject: | Machine learning | ESG investments | Firm performance | Künstliche Intelligenz | Artificial intelligence | Nachhaltige Kapitalanlage | Sustainable investment | Unternehmenserfolg | Corporate Social Responsibility | Corporate social responsibility | Prognoseverfahren | Forecasting model | Finanzanalyse | Financial analysis |
-
Predictive power of ESG factors for DAX ESG 50 index forecasting using multivariate LSTM
Rosinus, Manuel, (2025)
-
ESG score prediction through random forest algorithm
D'Amato, Valeria, (2022)
-
Doğan, Murat, (2025)
- More ...
-
ESG score prediction through random forest algorithm
D'Amato, Valeria, (2022)
-
Recent developments in financial modelling and risk management
D'Ecclesia, Rita Laura, (2021)
-
Measuring business impacts on the sustainability of European-listed firms
D'Ecclesia, Rita Laura, (2024)
- More ...