Good volatility, bad volatility, and time series return predictability
Year of publication: |
2022
|
---|---|
Authors: | Yu, Honghai ; Hao, Xianfeng ; Wang, Yudong |
Subject: | excess returns | machine learning | realized semivariance | Return forecasting | weighted least squares | Volatilität | Volatility | Kapitaleinkommen | Capital income | Prognoseverfahren | Forecasting model | Zeitreihenanalyse | Time series analysis | Theorie | Theory | Künstliche Intelligenz | Artificial intelligence | Kapitalmarktrendite | Capital market returns | Prognose | Forecast | ARCH-Modell | ARCH model |
-
Feature selection with annealing for forecasting financial time series
Pabuccu, Hakan, (2024)
-
Forecasting stock market dynamics using bidirectional long short-term memory
Park, Daehyeon, (2021)
-
Nonejad, Nima, (2023)
- More ...
-
Leading the Market : The Role of Momentum Spillovers
Yu, Honghai, (2023)
-
Forecasting the stock risk premium : a new statistical constraint
Hao, Xianfeng, (2023)
-
Forecasting the real prices of crude oil : what is the role of parameter instability?
Wang, Yudong, (2023)
- More ...