Indicator selection of index construction by adaptive lasso with a generic [epsilon]-insensitive loss
Year of publication: |
2022
|
---|---|
Authors: | Ye, Yafen ; Chi, Renyong ; Shao, Yuan-Hai ; Li, Chun-Na ; Hua, Xiangyu |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 60.2022, 3, p. 971-990
|
Subject: | Lasso | Regression | Robustness | Variable selection | Regressionsanalyse | Regression analysis | Index | Index number | Wirtschaftsindikator | Economic indicator | Robustes Verfahren | Robust statistics | Schätztheorie | Estimation theory |
-
Sparse regression for large data sets with outliers
Bottmer, Lea, (2022)
-
The robustness of trust, institutions and entrepreneurship regressions, revisited
Ovaska, Tomi, (2021)
-
A generalized ordinal finite mixture regression model for market segmentation
Zhang, Yifan, (2021)
- More ...
-
A sparse approach for high-dimensional data with heavy-tailed noise
Ye, Yafen, (2022)
-
The heterogeneous effect of financial technology on green total factor productivity in China
Ye, Yafen, (2023)
-
Chen, Weijie, (2024)
- More ...