Insights from machine learning for evaluating production function estimators on manufacturing survey data
Year of publication: |
2020
|
---|---|
Authors: | Preciado Arreola, José Luis ; Yagi, Daisuke ; Johnson, Andrew L. |
Published in: |
Journal of productivity analysis : an official journal of the International Society for Efficiency and Productivity Analysis. - New York, NY : Springer Science+Business Media LLC, ISSN 1573-0441, ZDB-ID 1478730-1. - Vol. 53.2020, 2, p. 181-225
|
Subject: | Convex nonparametric least squares | Adaptive partitioning | Multivariate convex regression | Nonparametric stochastic frontier | Nichtparametrisches Verfahren | Nonparametric statistics | Produktionsfunktion | Production function | Schätztheorie | Estimation theory | Künstliche Intelligenz | Artificial intelligence | Regressionsanalyse | Regression analysis |
-
Yagi, Daisuke, (2020)
-
Estimating production functions through additive models based on regression splines
España, Victor J., (2024)
-
LASSO variable selection in data envelopment analysis with small datasets
Lee, Chia-Yen, (2020)
- More ...
-
Yagi, Daisuke, (2020)
-
Preciado Arreola, José Luis, (2015)
-
Preciado Arreola, José Luis, (2020)
- More ...