Intelligent employee retention system for attrition rate analysis and churn prediction : an ensemble machine learning and multi-criteria decision-making approach
Year of publication: |
2021
|
---|---|
Authors: | Srivastava, Praveen Ranjan ; Eachempati, Prajwal |
Published in: |
Journal of global information management. - Hershey, Pa. : IGI Global, ISSN 1533-7995, ZDB-ID 2070054-4. - Vol. 29.2021, 6, Art.-No. 23, p. 1-29
|
Subject: | Churn Prediction | Deep Neural Network | Employee Turnover | Ensemble Gradient Boost Predictive Model | Fuzzy AHP | Random Forest | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Neuronale Netze | Neural networks | Fuzzy-Set-Theorie | Fuzzy sets | Arbeitsmobilität | Labour mobility | Mitarbeiterbindung | Employee retention | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | AHP-Verfahren | AHP approach | Data Mining | Data mining |
-
Mebarkia, Mohamed, (2024)
-
Presenting a multi-objective intelligent dynamic model of preventive maintenance using data mining
Fatemi, Seyyed Shahram, (2023)
-
Kumar, Prashant, (2022)
- More ...
-
Evaluating the effectiveness of drones in emergency situations : a hybrid multi-criteria approach
Zhang, Zuopeng, (2021)
-
Gauging opinions about the citizenship amendment ACT and NRC : a Twitter analysis approach
Srivastava, Praveen Ranjan, (2021)
-
Accounting for investor sentiment in news and disclosures
Eachempati, Prajwal, (2022)
- More ...