Learning to branch for the crew pairing problem
Year of publication: |
[2022]
|
---|---|
Authors: | Pereira, Pierre ; Courtade, Emeric ; Aloise, Daniel ; Quesnel, Frédéric ; Soumis, François ; Yaakoubi, Yassine |
Publisher: |
Montréal (Québec), Canada : GERAD, HÉC Montréal |
Subject: | Crew pairing problem | heuristics | machine learning | branching strategy | Heuristik | Heuristics | Künstliche Intelligenz | Artificial intelligence | Personaleinsatzplanung | Crew scheduling | Theorie | Theory | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm | Lernprozess | Learning process |
Extent: | 1 Online-Ressource (circa 17 Seiten) Illustrationen |
---|---|
Series: | Les cahiers du GERAD. - Montréal (Québec), Canada : GERAD, HÉC Montréal, ZDB-ID 3026340-2. - Vol. G-2022, 31 (July 2022) |
Type of publication: | Book / Working Paper |
Type of publication (narrower categories): | Graue Literatur ; Non-commercial literature ; Arbeitspapier ; Working Paper |
Language: | English |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Learning to enumerate shifts for large-scale flexible personnel scheduling problems
Rastgar-Amini, Farin, (2022)
-
Lin, Lin, (2018)
-
Solving a large-scale crew pairing problem
Erdŏgan, Güneş, (2015)
- More ...
-
An improved integral column generation algorithm using machine learning for aircrew pairing
Tahir, Adil, (2021)
-
Yaakoubi, Yassine, (2020)
-
Deep-learning-based partial pricing in a branch-and-price algorithm for personalized crew rostering
Quesnel, Frédéric, (2022)
- More ...