lmForc : Linear Model Forecasting in R
Year of publication: |
2022
|
---|---|
Authors: | Rayl, Nelson |
Publisher: |
[S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Regressionsanalyse | Regression analysis | Schätztheorie | Estimation theory | Wirtschaftsprognose | Economic forecast | Frühindikator | Leading indicator | Prognose | Forecast |
Extent: | 1 Online-Ressource (15 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 1, 2022 erstellt |
Other identifiers: | 10.2139/ssrn.4130453 [DOI] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Macroeconomic forecasting using factor models and machine learning : an application to Japan
Maehashi, Kohei, (2020)
-
Ghysels, Eric, (2015)
-
Bayesian model averaging and principal component regression forecasts in a data rich environment
Ouysse, Rachida, (2016)
- More ...
-
Integrating Prediction and Attribution to Classify News
Rayl, Nelson, (2022)
-
Cost of Austerity : Effect of Fiscal Consolidation in Europe Post 2010
Rayl, Nelson, (2020)
- More ...