Long-horizon predictions of credit default with inconsistent customers
Year of publication: |
2024
|
---|---|
Authors: | Chi, Guotai ; Dong, Bingjie ; Zhou, Ying ; Jin, Peng |
Published in: |
Technological forecasting and social change : an international journal. - Amsterdam [u.a.] : Elsevier Science, ISSN 0040-1625, ZDB-ID 2015184-6. - Vol. 198.2024, Art.-No. 123008, p. 1-14
|
Subject: | Machine learning | Chinese credit market | Credit characteristics | Default prediction | Inconsistent customers | Time window | Prognoseverfahren | Forecasting model | Kreditrisiko | Credit risk | Künstliche Intelligenz | Artificial intelligence | China | Insolvenz | Insolvency | Kreditwürdigkeit | Credit rating | Kreditmarkt | Credit market | Beziehungsmarketing | Relationship marketing | Konsumentenverhalten | Consumer behaviour |
-
Machine learning predictivity applied to consumer creditworthiness
Aniceto, Maisa Cardoso, (2020)
-
Liu, Yi, (2022)
-
Predicting mortgage loan defaults using machine learning techniques
Krasovytskyi, Danylo, (2024)
- More ...
-
EWT-SMOTE to improve default prediction performance in imbalanced data : analysis of Chinese data
Zhou, Ying, (2024)
-
Chi, Guotai, (2022)
-
Feature selection in credit risk modeling : an international evidence
Zhou, Ying, (2021)
- More ...