Long memory and nonlinearities in realized volatility : a Markov switching approach
Year of publication: |
February 6, 2010
|
---|---|
Authors: | Bordignon, Silvano ; Raggi, Davide |
Publisher: |
Bologna : Dipartimento di Scienze economiche DSE |
Subject: | Realized volatility | Switching-regime | Long memory | MCMC | Forecasting | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Markov-Kette | Markov chain | Prognoseverfahren | Forecasting model | Theorie | Theory | Kapitaleinkommen | Capital income | Schätzung | Estimation | Nichtlineare Regression | Nonlinear regression | ARCH-Modell | ARCH model | ARMA-Modell | ARMA model |
-
Volatility forecasting : long memory, regime switching and heteroscedasticity
Ma, Feng, (2019)
-
Modeling and forecasting S&P 500 volatility : long memory, structural breaks and nonlinearity
Martens, Martin, (2004)
-
Nonlinearity, breaks, and long-range dependence in time-series models
Hillebrand, Eric, (2016)
- More ...
-
Volatility, Jumps and Predictability of Returns: a Sequential Analysis
Bordignon, Silvano, (2008)
-
Long memory and nonlinearities in realized volatility: a Markov switching approach
Bordignon, Silvano, (2010)
-
Comparing stochastic volatility models through Monte Carlo simulations
Raggi, Davide, (2006)
- More ...