Machine learning for credit scoring: Improving logistic regression with non-linear decision-tree effects
Year of publication: |
2022
|
---|---|
Authors: | Dumitrescu, Elena ; Hué, Sullivan ; Hurlin, Christophe ; Tokpavi, Sessi |
Published in: |
European journal of operational research : EJOR. - Amsterdam : Elsevier, ISSN 0377-2217, ZDB-ID 243003-4. - Vol. 297.2022, 3 (16.3.), p. 1178-1192
|
Subject: | Risk management | Credit scoring | Machine learning | Interpretability | Econometrics | Künstliche Intelligenz | Artificial intelligence | Kreditwürdigkeit | Credit rating | Risikomanagement | Regressionsanalyse | Regression analysis | Theorie | Theory | Prognoseverfahren | Forecasting model | Kreditrisiko | Credit risk | Ökonometrie |
-
Machine learning in credit risk : measuring the dilemma between prediction and supervisory cost
Alonso, Andrés, (2020)
-
El Khair Ghoujdam, Mousaab, (2024)
-
Coenen, Lize, (2022)
- More ...
-
Machine Learning or Econometrics for Credit Scoring : Let's Get the Best of Both Worlds
Dumitrescu, Elena-Ivona, (2020)
-
Measuring Network Systemic Risk Contributions : A Leave-One-Out Approach
Hué, Sullivan, (2018)
-
Measuring network systemic risk contributions : a leave-one-out approach
Hué, Sullivan, (2019)
- More ...