Machine learning for food security : principles for transparency and usability
Year of publication: |
2022
|
---|---|
Authors: | Zhou, Yujun ; Lentz, Erin C. ; Michelson, Hope ; Kim, Chungmann ; Baylis, Kathy |
Published in: |
Applied economic perspectives and policy. - Hoboken, NJ : Wiley, ISSN 2040-5804, ZDB-ID 2529839-2. - Vol. 44.2022, 2, p. 893-910
|
Subject: | food policy | food security | machine learning | remote-sensing | sub-Saharan Africa | Ernährungssicherung | Food security | Künstliche Intelligenz | Artificial intelligence | Ernährungspolitik | Nutrition policy | Zentralafrika | Central Africa | Subsahara-Afrika | Sub-Saharan Africa |
-
Gordon, Jessica, (2022)
-
Cassimon, Danny, (2021)
-
Mumin, Yazeed Abdul, (2022)
- More ...
-
Machine learning for food security : Principles for transparency and usability
Zhou, Yujun, (2021)
-
A data-driven approach improves food insecurity crisis prediction
Lentz, Erin C., (2019)
-
A Data-Driven Approach to Robust Predictions of Food Insecurity Crises
Lentz, Erin, (2019)
- More ...