Matrix evolutions : synthetic correlations and explainable machine learning for constructing robust investment portfolios
| Year of publication: |
2021
|
|---|---|
| Authors: | Papenbrock, Jochen ; Schwendner, Peter ; Jaeger, Markus ; Krügel, Stephan |
| Published in: |
The journal of financial data science. - New York, NY : Pageant Media, Ltd., ISSN 2640-3951, ZDB-ID 2957666-0. - Vol. 3.2021, 2, p. 51-69
|
| Subject: | Statistical methods | big data/machine learning | portfolio construction | performance measurement | Portfolio-Management | Portfolio selection | Künstliche Intelligenz | Artificial intelligence | Performance-Messung | Performance measurement | Korrelation | Correlation | Statistische Methode | Statistical method | Lernprozess | Learning process | Lernen | Learning |
-
Machine learning algorithms to classify future returns using structured and unstructured data
Livnat, Joshua, (2021)
-
A machine learning approach in regime-switching risk parity portfolios
Uysal, A. Sinem, (2021)
-
Interpretable machine learning for diversified portfolio construction
Jaeger, Markus, (2021)
- More ...
-
Papenbrock, Jochen, (2020)
-
Interpretable machine learning for diversified portfolio construction
Jaeger, Markus, (2021)
-
Schwendner, Peter, (2021)
- More ...