Mixed-frequency predictive regressions with parameter learning
Year of publication: |
2023
|
---|---|
Authors: | Leippold, Markus ; Yang, Hanlin |
Published in: |
Journal of forecasting. - New York, NY : Wiley Interscience, ISSN 1099-131X, ZDB-ID 2001645-1. - Vol. 42.2023, 8, p. 1955-1972
|
Subject: | consumption–wealth ratio | mixed-frequency data | parameter learning | portfolio optimization | predictive regressions | stochastic volatility | Portfolio-Management | Portfolio selection | Regressionsanalyse | Regression analysis | Kapitaleinkommen | Capital income | Lernprozess | Learning process | Prognoseverfahren | Forecasting model | Schätztheorie | Estimation theory | Volatilität | Volatility | Bayes-Statistik | Bayesian inference | Stochastischer Prozess | Stochastic process | Monte-Carlo-Simulation | Monte Carlo simulation |
-
Mixed-Frequency Predictive Regressions with Parameter Learning
Leippold, Markus, (2023)
-
Conditional value-at-risk forecasts of an optimal foreign currency portfolio
Kim, Dongwhan, (2021)
-
Ignatieva, Ekaterina, (2015)
- More ...
-
Particle Filtering, Learning, and Smoothing for Mixed-Frequency State-Space Models
Leippold, Markus, (2021)
-
Mixed-Frequency Predictive Regressions with Parameter Learning
Leippold, Markus, (2023)
-
Resource Integration and Synergistic Innovation Effect of Innovative Enterprises
Yang, Hanlin, (2023)
- More ...