Particle Filtering, Learning, and Smoothing for Mixed-Frequency State-Space Models
Year of publication: |
[2021]
|
---|---|
Authors: | Leippold, Markus ; Yang, Hanlin |
Publisher: |
[S.l.] : SSRN |
Subject: | Zustandsraummodell | State space model | Schätztheorie | Estimation theory | Zeitreihenanalyse | Time series analysis | Lernen | Learning |
Extent: | 1 Online-Ressource (39 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments August 1, 2019 erstellt |
Other identifiers: | 10.2139/ssrn.2856948 [DOI] |
Classification: | C13 - Estimation ; C32 - Time-Series Models ; C53 - Forecasting and Other Model Applications |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Long Memory in Stock Returns : An Analysis Using a Wavelet Based Semi-Parametric Estimator
Bhandari, Avishek, (2018)
-
Likelihood functions for state space models with diffuse initial conditions
Francke, Marc K., (2008)
-
Spline smoothing over difficult regions
Koopman, Siem Jan, (2008)
- More ...
-
Mixed-frequency predictive regressions with parameter learning
Leippold, Markus, (2023)
-
Mixed-Frequency Predictive Regressions with Parameter Learning
Leippold, Markus, (2023)
-
Resource Integration and Synergistic Innovation Effect of Innovative Enterprises
Yang, Hanlin, (2023)
- More ...