Modeling high-frequency financial data using R and Stan : a bayesian autoregressive conditional duration approach
Year of publication: |
2024
|
---|---|
Authors: | Tabash, Mosab I. ; Navas, T. Muhammed ; Thayyib, P. V. ; Farhin, Shazia ; Khan, Athar Ali ; Hannoon, Azzam |
Published in: |
Journal of open innovation : technology, market, and complexity. - Basel : MDPI, ISSN 2199-8531, ZDB-ID 2832108-X. - Vol. 10.2024, 2, Art.-No. 100249, p. 1-16
|
Subject: | Bayesian Inference | Birnbaum-Saunders | BSACD | Generalized Gamma ACD | GGACD | High-frequency trading | Log Weibull ACD | Markov Chain Monte Carlo | MCMC | Volatility modelling | WACD | Weibull ACD | Markov-Kette | Markov chain | Bayes-Statistik | Bayesian inference | Volatilität | Volatility | Zeitreihenanalyse | Time series analysis | Börsenkurs | Share price | Monte-Carlo-Simulation | Monte Carlo simulation | Schätzung | Estimation | Elektronisches Handelssystem | Electronic trading | Statistische Bestandsanalyse | Duration analysis | Statistische Verteilung | Statistical distribution | Schätztheorie | Estimation theory |
-
Volatility estimation using a rational GARCH model
Takaishi, Tetsuya, (2018)
-
Bayesian approach to Lorenz curve using time series grouped data
Kobayashi, Genya, (2022)
-
Lengua Lafosse, Patricia, (2018)
- More ...
-
Global approaches to sustainability through learning and education
Al-Sartawi, Abdalmuttaleb M. A. Musleh, (2019)
-
Do demographics influence workforce agility score of tax professionals in Bangalore, India?
Thayyib, P. V., (2021)
-
Thayyib, P. V., (2023)
- More ...