Multivariate Latent Growth Modeling: Issues on Preliminary Data Analyses
Multivariate latent growth modeling (multivariate LGM) provides a flexible data analytic framework for representing and assessing cross-domain (i.e., between-constructs) relationships in intraindividual changes over time, which also allows incorporation of multiple levels of analysis. Using the chapter by Cortina, Pant, and Smith-Darden (this volume) as a point of departure, this chapter discusses important preliminary data analysis and interpretation issues prior to performing multivariate LGM analyses.