Neural network models for empirical finance
Year of publication: |
2020
|
---|---|
Authors: | Calvo Pardo, Héctor F. ; Mancini, Tullio ; Olmo, Jose |
Published in: |
Journal of risk and financial management : JRFM. - Basel : MDPI, ISSN 1911-8074, ZDB-ID 2739117-6. - Vol. 13.2020, 11/265, p. 1-22
|
Subject: | machine learning | dropout methods | financial modeling | LASSO techniques | neural networks | Neuronale Netze | Neural networks | Künstliche Intelligenz | Artificial intelligence | Schätztheorie | Estimation theory | Prognoseverfahren | Forecasting model | Finanzmarkt | Financial market |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.3390/jrfm13110265 [DOI] hdl:10419/239362 [Handle] |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Tänzer, Alina, (2024)
-
Nõu, Anders, (2023)
-
Neural nets for indirect inference
Creel, Michael D., (2016)
- More ...
-
Machine learning the carbon footprint of Bitcoin mining
Calvo Pardo, Héctor F., (2022)
-
Neural network models for empirical finance
Calvo Pardo, Héctor F., (2020)
-
Optimal deep neural networks by maximization of the approximation power
Calvo Pardo, Héctor F., (2023)
- More ...