Optimisation and prediction of machining parameters in EDM for Al-ZrO2 using soft computing techniques with Taguchi method
Year of publication: |
2021
|
---|---|
Authors: | Ramaswamy, G. Aswin ; Krishna, Amal ; Gautham, M. ; Sudharshan, S. S. ; Gokulachandran, J. |
Published in: |
International journal of process management and benchmarking : IJPMB. - Genève : Inderscience Enterprises, ISSN 1741-816X, ZDB-ID 2205246-X. - Vol. 11.2021, 6, p. 864-890
|
Subject: | ANN | artificial neural network | fuzzy logic | optimisation | prediction | Taguchi method | Fuzzy-Set-Theorie | Fuzzy sets | Neuronale Netze | Neural networks | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Multikriterielle Entscheidungsanalyse | Multi-criteria analysis | Mathematische Optimierung | Mathematical programming | Algorithmus | Algorithm |
-
Srivastava, Praveen Ranjan, (2021)
-
Financial sequence prediction based on swarm intelligence algorithms of Internet of Things
Liu, Jinquan, (2022)
-
Improving a fuzzy neural network for predicting storage usage and calculating customer value
Rabieyan, Reza, (2020)
- More ...
-
Gokulachandran, J., (2018)
-
Application of artificial neural network techniques in computer aided process planning : a review
Natarajan, K. K., (2021)
- More ...