Polynomial Chaos Expansion: Efficient Evaluation and Estimation of Computational Models
| Year of publication: |
2025
|
|---|---|
| Authors: | Fehrle, Daniel ; Heiberger, Christopher ; Huber, Johannes |
| Published in: |
Computational Economics. - New York, NY : Springer US, ISSN 1572-9974. - Vol. 65.2025, 2, p. 1083-1146
|
| Publisher: |
New York, NY : Springer US |
| Subject: | Polynomial chaos expansion | Parameter inference | Parameter uncertainty | Solution methods |
| Type of publication: | Article |
|---|---|
| Type of publication (narrower categories): | Article |
| Language: | English |
| Other identifiers: | 10.1007/s10614-024-10772-5 [DOI] hdl:10419/323340 [Handle] |
| Classification: | C11 - Bayesian Analysis ; C13 - Estimation ; C32 - Time-Series Models ; C63 - Computational Techniques |
| Source: |
-
Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion : efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
- More ...
-
Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial chaos expansion: Efficient evaluation and estimation of computational models
Fehrle, Daniel, (2020)
-
Polynomial Chaos Expansion Efficient Evaluation and Estimation of Computational Models
Heiberger, Christopher, (2022)
- More ...