Predicting Default More Accurately : To Proxy or Not to Proxy for Default?
Year of publication: |
2018
|
---|---|
Authors: | Galil, Koresh |
Other Persons: | Gilat, Neta (contributor) |
Publisher: |
[2018]: [S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Insolvenz | Insolvency | Kreditrisiko | Credit risk |
Extent: | 1 Online-Ressource (35 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 3, 2015 erstellt |
Other identifiers: | 10.2139/ssrn.2618190 [DOI] |
Classification: | G17 - Financial Forecasting ; G33 - Bankruptcy; Liquidation |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Predicting Default – Merton vs. Leland
Forssbæck, Jens, (2017)
-
Enhancing credit risk assessments of SMEs with non-financial information
Wahlstrøm, Ranik Raaen, (2024)
-
Predicting distresses using deep learning of text segments in annual reports
Hansen, Caspar, (2018)
- More ...
-
Predicting Default More Accurately: To Proxy or Not to Proxy for Default?
Galil, Koresh, (2018)
-
Rating shopping and rating inflation in Israel
Bakalyar, Inna, (2014)
-
The determinants of CDS spreads
Galil, Koresh, (2014)
- More ...