Predicting stock price using two-stage machine learning techniques
Year of publication: |
2021
|
---|---|
Authors: | Zhang, Jun ; Li, Lan ; Chen, Wei |
Published in: |
Computational economics. - Dordrecht [u.a.] : Springer Science + Business Media B.V., ISSN 1572-9974, ZDB-ID 1477445-8. - Vol. 57.2021, 4, p. 1237-1261
|
Subject: | Fusion models | Adaptive neuro fuzzy inference system (ANFIS) | Stock market | Support vector regression (SVR) | Börsenkurs | Share price | Prognoseverfahren | Forecasting model | Künstliche Intelligenz | Artificial intelligence | Fuzzy-Set-Theorie | Fuzzy sets | Aktienmarkt | Regressionsanalyse | Regression analysis | Mustererkennung | Pattern recognition | Neuronale Netze | Neural networks |
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
-
Develop an integrated candlestick technical analysis model using meta-heuristic algorithms
Mahmoodi, Armin, (2024)
-
Mahmoodi, Armin, (2024)
- More ...
-
The relationship between strategic planning and entrepreneurial business orientation
Li, Lan, (2007)
-
Gao, Jingyan, (2022)
-
Does subordinate moqi affect employee voice? : the role of work engagement and role stress
Li, Lan, (2023)
- More ...