PREDICTING STOCK RETURN AND VOLATILITY WITH MACHINE LEARNING AND ECONOMETRIC MODELS : A COMPARATIVE CASE STUDY OF THE BALTIC STOCK MARKET
Year of publication: |
[2022]
|
---|---|
Authors: | Nõu, Anders ; Lapitskaya, Darya ; Eratalay, Mustafa Hakan ; Sharma, Rajesh |
Publisher: |
[S.l.] : SSRN |
Subject: | Prognoseverfahren | Forecasting model | Baltische Staaten | Baltic countries | Aktienmarkt | Stock market | Kapitaleinkommen | Capital income | Künstliche Intelligenz | Artificial intelligence | Volatilität | Volatility | Börsenkurs | Share price |
Extent: | 1 Online-Ressource (52 p) |
---|---|
Type of publication: | Book / Working Paper |
Language: | English |
Notes: | Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 30, 2021 erstellt |
Other identifiers: | 10.2139/ssrn.3974770 [DOI] |
Classification: | C23 - Models with Panel Data ; C45 - Neural Networks and Related Topics ; C51 - Model Construction and Estimation ; C52 - Model Evaluation and Testing ; C53 - Forecasting and Other Model Applications ; c58 |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Sector Level Equity Returns Predictability with Machine Learning and Market Contagion Measure
Peng, Weijia, (2023)
-
Mehtab, Sidra, (2020)
-
Machine learning for predicting stock return volatility
Filipović, Damir, (2021)
- More ...
-
Nõu, Anders, (2023)
-
Nõu, Anders, (2021)
-
The Effects of the ECB Communications on Financial Markets before and during COVID-19 Pandemic
Alfieri, Luca, (2022)
- More ...