Predicting U.S. bank failures and stress testing with machine learning algorithms
Year of publication: |
2025
|
---|---|
Authors: | Hu, Wendi ; Shao, Chujian ; Zhang, Wenyu |
Published in: |
Finance research letters. - New York : Elsevier Science, ISSN 1544-6123, ZDB-ID 2145766-9. - Vol. 75.2025, Art.-No. 106802, p. 1-10
|
Subject: | Machine learning | Bankruptcy | Financial distress | Forecasting | Insolvenz | Insolvency | Künstliche Intelligenz | Artificial intelligence | Bankinsolvenz | Bank failure | Prognoseverfahren | Forecasting model | USA | United States | Kreditrisiko | Credit risk | Algorithmus | Algorithm | Bankenkrise | Banking crisis |
-
Shrivastava, Santosh Kumar, (2020)
-
Anticipating bank distress in the Eurozone : an Extreme Gradient Boosting approach
Climent Diranzo, Francisco J., (2019)
-
EU-27 bank failure prediction with C5.0 decision trees and deep learning neural networks
Kristóf, Tamás, (2022)
- More ...
-
Zhuang, Castiel Chen, (2025)
-
Zhang, Wenyu, (2024)
-
Which financial earmarking policy is more effective in promoting FinTech innovation and regulation?
Xu, Yueling, (2021)
- More ...