Random regression forest model using technical analysis variables : an application on Turkish banking sector in Borsa Istanbul (BIST)
| Year of publication: |
2016
|
|---|---|
| Authors: | Emir, Senol ; Dinçer, Hasan ; Hacıoğlu, Ümit ; Yuksel, Serhat |
| Published in: |
International journal of finance & banking studies : JJFBS. - Istanbul : [Verlag nicht ermittelbar], ISSN 2147-4486, ZDB-ID 2724514-7. - Vol. 5.2016, 3, p. 85-102
|
| Subject: | Random Forest Regression | Artificial Neural Networks | Technical Analysis | Banking Sector | Variable Importance | Türkei | Turkey | Bank | Neuronale Netze | Neural networks | Regressionsanalyse | Regression analysis | Prognoseverfahren | Forecasting model | Finanzanalyse | Financial analysis | Theorie | Theory |
-
Application of machine learning in algorithmic investment strategies on global stock markets
Grudniewicz, Jan, (2023)
-
Trigkas, Sotirios J., (2020)
-
Now- and backcasting initial claims with high-dimensional daily internet search-volume data
Borup, Daniel, (2021)
- More ...
-
Financial determinants of bank profits : a comparative analysis of Turkish banking sector
Dinçer, Hasan, (2014)
-
Dinçer, Hasan, (2018)
-
Dinçer, Hasan, (2017)
- More ...