Robust monitoring machine : a machine learning solution for out-of-sample R2-hacking in return predictability monitoring
Year of publication: |
2023
|
---|---|
Authors: | Yae, James ; Luo, Yang |
Published in: |
Financial innovation : FIN. - Heidelberg : SpringerOpen, ISSN 2199-4730, ZDB-ID 2824759-0. - Vol. 9.2023, 1, Art.-No. 94, p. 1-28
|
Subject: | Machine learning | Monitoring | Out-of-sample R2-hacking | Return predictability | Künstliche Intelligenz | Artificial intelligence | Prognoseverfahren | Forecasting model | Kapitaleinkommen | Capital income | Kapitalmarktrendite | Capital market returns | Prognose | Forecast |
Type of publication: | Article |
---|---|
Type of publication (narrower categories): | Aufsatz in Zeitschrift ; Article in journal |
Language: | English |
Other identifiers: | 10.1186/s40854-023-00497-z [DOI] |
Classification: | C52 - Model Evaluation and Testing ; C53 - Forecasting and Other Model Applications ; c55 ; c58 ; G17 - Financial Forecasting |
Source: | ECONIS - Online Catalogue of the ZBW |
-
Stock Returns Forecasting via Machine Learning with Average Windows Forecasts
Ho, Tsung-Wu, (2022)
-
Diverging roads: theory-based vs. machine learning-implied stock risk premia
Grammig, Joachim, (2020)
-
Yae, James, (2022)
- More ...
-
Yae, James, (2022)
-
Green credit and regional industrial structure upgrading : Evidence from China
Li, Ran, (2024)
-
Meng, Hui, (2019)
- More ...