Some insights about the applicability of logistic factorisation machines in banking
Year of publication: |
2023
|
---|---|
Authors: | Slabber, Erika ; Verster, Tanja ; De Jongh, Riaan |
Published in: |
Risks : open access journal. - Basel : MDPI, ISSN 2227-9091, ZDB-ID 2704357-5. - Vol. 11.2023, 3, Art.-No. 48, p. 1-21
|
Subject: | logistic regression | factorisation machines | random forests | machine learning | recommender system | credit scoring | logit loss | maximum likelihood estimation | Künstliche Intelligenz | Artificial intelligence | Kreditwürdigkeit | Credit rating | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Logit-Modell | Logit model | Regressionsanalyse | Regression analysis | Theorie | Theory | Logistik | Logistics | Kreditrisiko | Credit risk |
-
El Khair Ghoujdam, Mousaab, (2024)
-
A comparison of credit scoring techniques in Peer-to-Peer lending
Dzik-Walczak, Aneta, (2019)
-
Revisiting SME default predictors : the Omega Score
Altman, Edward I., (2022)
- More ...
-
The impact of PD-LGD correlation on expected loss and economic capital
Van Vuuren, Gary, (2017)
-
A critical review of the Basel margin of conservatism requirement in a retail credit context
De Jongh, Riaan, (2017)
-
A motivation for banks in emerging economies to adapt agency ratings when assessing corporate credit
Verster, Tanja, (2019)
- More ...