Symbolic regression-based adaptive generation of implied volatility
Year of publication: |
2022
|
---|---|
Authors: | Yen, Joseph ; Qi, Yuan Yuan ; Wong, Seng Fat ; Zhou, Jiantao |
Published in: |
International journal of financial engineering. - Singapore [u.a.] : World Scientific, ISSN 2424-7944, ZDB-ID 2832512-6. - Vol. 9.2022, 3, Art.-No. 2250018, p. 2250018-1-2250018-27
|
Subject: | finance | FPGA | Implied volatility | machine learning | symbolic regression | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Regressionsanalyse | Regression analysis | Optionspreistheorie | Option pricing theory | Prognoseverfahren | Forecasting model |
-
Yen, Jerome, (2021)
-
Using machine learning to predict realized variance
Carr, Peter, (2020)
-
Artificial Neural Networks Performance in WIG20 Index Options Pricing
Wysockia, Maciej, (2020)
- More ...
-
The <i>hukou</i> system and selective internal migration in China
Zhou, Jiantao, (2021)
-
The effects of a shopping mall on housing prices : a case study in Hangzhou
Zhang, Ling, (2019)
-
Theory and practice on lending risk control by the government in the Song Dynasty
Zhou, Jianbo, (2017)
- More ...