The online shortest path problem : learning travel times using a multiarmed bandit framework
Year of publication: |
2025
|
---|---|
Authors: | Lagos, Tomás ; Auad, Ramón ; Lagos, Felipe |
Subject: | kriging | last-mile logistics | machine learning | multiarmed bandits | online shortest path | Thompson sampling | Künstliche Intelligenz | Artificial intelligence | Algorithmus | Algorithm | E-Learning | E-learning | Lernprozess | Learning process | Stichprobenerhebung | Sampling | Graphentheorie | Graph theory | Logistik | Logistics | Tourenplanung | Vehicle routing problem |
-
Liang, Yile, (2024)
-
Learning to optimize via posterior sampling
Russo, Daniel, (2014)
-
Noise-robust sampling for collaborative metric learning
Matsui, Ryo, (2022)
- More ...
-
Bilevel optimization approach for fuel treatment planning
Lagos, Tomás, (2025)
-
On complexity of finding strong-weak solutions in bilevel linear programming
Lagos, Tomás, (2023)
-
Multi-armed bandit-based hyper-heuristics for combinatorial optimization problems
Lagos, Felipe, (2024)
- More ...