The RWDAR model : a novel state-space approach to forecasting
Year of publication: |
2023
|
---|---|
Authors: | Sbrana, Giacomo ; Silvestrini, Andrea |
Published in: |
International journal of forecasting. - Amsterdam [u.a.] : Elsevier, ISSN 0169-2070, ZDB-ID 283943-X. - Vol. 39.2023, 2, p. 922-937
|
Subject: | Approximate maximum likelihood estimation | Forecasting | Kalman gain | M3 and M4 competitions | Theta method | Prognoseverfahren | Forecasting model | Theorie | Theory | Maximum-Likelihood-Schätzung | Maximum likelihood estimation | Zustandsraummodell | State space model | Prognose | Forecast |
-
Random coefficient state-space model : estimation and performance in M3-M4 competitions
Sbrana, Giacomo, (2022)
-
An Hourly Periodic State Space Model for Modelling French National Electricity Load
Dordonnat, V., (2008)
-
Likelihood-based analysis for dynamic factor models
Jungbacker, Borus, (2008)
- More ...
-
Random switching exponential smoothing and inventory forecasting
Sbrana, Giacomo, (2014)
-
Sbrana, Giacomo, (2013)
-
Temporal aggregation of cyclical models with business cycle applications
Sbrana, Giacomo, (2012)
- More ...