Trading the FX volatility risk premium with machine learning and alternative data
Year of publication: |
2022
|
---|---|
Authors: | Dierckx, Thomas ; Davis, Jesse ; Schoutens, Wim |
Published in: |
The Journal of finance and data science : JFDS. - Amsterdam [u.a.] : Elsevier, ISSN 2405-9188, ZDB-ID 2837532-4. - Vol. 8.2022, p. 162-179
|
Subject: | Alternative data | Financial news | Machine learning | Trading strategy | Volatility risk premium | Volatilität | Volatility | Künstliche Intelligenz | Artificial intelligence | Risikoprämie | Risk premium | Prognoseverfahren | Forecasting model | Portfolio-Management | Portfolio selection | Anlageverhalten | Behavioural finance |
-
Classification of intraday s&p500 returns with a random forest
Lohrmann, Christoph, (2019)
-
Supervised autoencoder MLP for financial time series forecasting
Bieganowski, Bartosz, (2024)
-
Financial & investment strategies to captivate S&P 500 volatility premium
Garefalakis, Alexandros, (2017)
- More ...
-
Gradient boosting for quantitative finance
Davis, Jesse, (2021)
-
Crowded Spaces and Copycat Risk Management
Bruno, Salvatore, (2015)
-
Choosing to Disagree in Financial Markets
Banerjee, Snehal, (2019)
- More ...