Valuation ratios, surprises, uncertainty or sentiment : how does financial machine learning predict returns from earnings announcements?
Year of publication: |
[2020]
|
---|---|
Authors: | Schnaubelt, Matthias ; Seifert, Oleg |
Publisher: |
[Nürnberg] : Friedrich-Alexander-Universität Erlangen-Nürnberg, Institute for Economics |
Subject: | Earnings announcements | Asset pricing | Machine learning | Natural languageprocessing | Künstliche Intelligenz | Artificial intelligence | Ankündigungseffekt | Announcement effect | Prognoseverfahren | Forecasting model | Finanzanalyse | Financial analysis | Gewinnprognose | Earnings announcement | Gewinn | Profit | Börsenkurs | Share price | Portfolio-Management | Portfolio selection | Anlageverhalten | Behavioural finance | CAPM | Kapitalmarkttheorie | Financial economics | Kapitaleinkommen | Capital income |
-
Schnaubelt, Matthias, (2020)
-
Do investors fully unravel persistent pessimism in analysts' earnings forecasts?
Veenman, David, (2018)
-
Bhattacharya, Nilabhra, (2021)
- More ...
-
A topic modeling perspective on investor uncertainty
Perico Ortiz, Daniel, (2023)
-
Schnaubelt, Matthias, (2020)
-
Schnaubelt, Matthias, (2020)
- More ...